
Predicate-based explanation of Reinforcement Learning
Léo Saulières ;*, Martin C. Cooper and Florence Dupin de Saint-Cyr

IRIT, University of Toulouse III, France

Abstract. For the purpose of understanding the impact of a Rein-
forcement Learning (RL) agent’s decisions on the satisfaction of a
given arbitrary predicate, we present a method based on the evalua-
tion of the importance of actions. This highlights to the user the most
important action(s) in a history of the agent’s interactions with the
environment. Having shown that calculating the action importance
for a predicate to hold is #W[1]-hard, we propose a time-saving ap-
proximation. To do so, we use the most likely transitions in the envi-
ronment. Experiments confirm the relevance of this approach.

1 Introduction

In the last decade, the use of neural networks has led to more power-
ful Artificial Intelligence models, but these were also complex, akin
to black-boxes. To increase user confidence, a need for explanation
arose, highlighted by researchers [3, 2] and legislators [5, 6]. Accord-
ingly, Explainable Artificial Intelligence (XAI) is a field dedicated to
the explanation of ‘black box’ models.

RL is a Machine Learning paradigm where an agent learns to
make a sequence of actions within an environment. Given a state,
the agent chooses an action at each time-step, arrives in a new state
and receives a reward, determined by the environment dynamics. The
agent’s goal is to maximize its reward by learning an optimal policy.

EXplainable Reinforcement Learning (XRL) is a sub domain of
XAI which aims to provide explainers for RL models. Our XRL
method focuses on the explanation of past state-action sequences,
which we call histories. The aim is to understand the impact of an ac-
tion on the achievement of a given predicate. A predicate can reflect
the agent’s success, failure or problem-specific properties. To address
this question, an importance score is computed for each action in
the history. Then, the most important action(s) and corresponding
state(s) are displayed to the user.

2 History-Explanation based on Predicates (HXP)

Before diving into the HXP method, we need to introduce some RL
notation. A Markov Decision Process (MDP) describes an RL prob-
lem [9]. An MDP is a tuple ⟨S,A,R, p⟩ where S and A correspond
respectively to the set of states and actions, R : S × A → R rep-
resents the reward function and p : S × A → Pr(S) is the transi-
tion function of the environment. Given an action a ∈ A and a state
s ∈ S, p(s′|s, a) is the probability to reach the state s′ from s by
doing a. In this paper, we restrict our explanations to deterministic
policies π : S → A, which map to each state s an action a. π(s)
denotes the action to do in s given the policy π.

∗ Corresponding Author. Email: leo.saulieres@irit.fr.

Given a history reflecting the agent’s behavior and a predicate d,
our aim is to answer this question: “Which actions were important
to ensure that d was achieved, given the agent’s policy π?" by com-
puting an importance score for each action in the history. The impor-
tance score represents the benefit (in terms of achieving the predi-
cate) of performing an action a in a state s instead of another action
a′ ∈ A(s)/{a} in s. Accordingly, the utility of doing an action a
from a state s, relative to the achievement of predicate d, must be
measured. As the impact of an action is not necessarily in the short
term, our basic idea is: generate the set of length-k scenarios starting
with action a in state s, then compute the probability of reaching a
final state at horizon k in which d is valid. In this context, a scenario
is a hypothetical state-action sequence generated in order to calcu-
late the utility of the action and k is a constant (set, by default, to the
history length whatever the position of the action in the history).

Scenarios are generated by using the agent’s policy π at each time-
step, and exploring each possible transition allowed by p. We use a
recursive function, denoted succk, which returns the set of reachable
states and corresponding probabilities at depth k from a given initial
state. The probability of a state is the product of the probabilities
along the current path to this state according to p.

Definition 1. Given a transition function p, a set of (state, probabil-
ity) pairs Sp and a policy π, nextπ is defined as follows:

nextπ(Sp, p) =

(s′, pr × p(s′|s, a))

∣∣∣∣∣∣
(s, pr) ∈ Sp

a = π(s)
p(s′|s, a) ̸= 0


We can now define succnπ as follows, where s0 is the inital state:

succ0π(s0, p) = {(s0, 1)}

succn+1
π (s0, p) = nextπ(succ

n
π(s0, p), p)

The utility of a set of (state, probability) pairs relative to a pred-
icate d is simply the sum of the probabilities corresponding to the
states where d holds.

Definition 2. Given a predicate d, the utility ud of a set of (state,
probability) pairs Sp is defined as follows:

ud(Sp) =
∑

(s,pr)∈Sp,s|=d

pr

The utility ud(succ
k
π(s0, p)) measures the probability that d is

true after k steps of policy π from initial state s0. Utility lies in the
range [0, 1]. A utility close to 1 means a high probability of arriving,
after k time steps, in a final state that satisfies d.

Definition 1 allows us to generate the final states obtained k steps
after executing action a and compute its utility relative to a predicate

https://orcid.org/https://orcid.org/0000-0002-4800-9181
https://orcid.org/https://orcid.org/0000-0003-4853-053X
https://orcid.org/https://orcid.org/0000-0001-7891-9920


d thanks to Definition 2. With this in mind, the importance score of
an action a, from a state s in the history is the difference between the
utility of a and the average utility of any other action a′ ∈ A(s)\{a}.

Definition 3. Given a predicate d, an agent’s policy π and a tran-
sition function p, the importance score of a from s at horizon k is
defined by:

impd(s, a, π, p, k) = ud(succ
k
π(S(s,a), p))

− avg
a′∈A(s)\{a}

ud(succ
k
π(S(s,a′), p)) (1)

where avg is the average and S(s,a) is the set of reachable states
(along with their probabilities) from s by performing action a. For-
mally, we have:

S(s,a) =
{
(s′, p(s′|s, a))

∣∣ p(s′|s, a) ̸= 0
}

(2)

An importance score lies in the range [−1, 1]. The agent’s action
from a specific state is bad for achieving the predicate d if its impor-
tance score is negative. On the contrary, a positive score indicates a
good action for achieving d in comparison with other available ac-
tions. Given a history of length k and a predicate d, HXP consists in
calculating the importance scores for the k actions in the history and
displaying to the user the most important action(s) for achieving d.
For the calculation of importance scores, the combined use of succ
and u is computationally hard, as we show now. For a predicate d,
we write d ∈ P to mean that it can be evaluated in time which is a
polynomial function of the size of its input.

Proposition 1. Given an initial state s0 and a predicate d ∈ P, the
problem of determining the probability that at the end of a length-k
scenario, starting at s0, the final state sk satisfies the predicate d is
#W [1]-hard for parameter k.

The proof of Proposition 1 can be found in [8]. Based on Proposi-
tion 1, it is easy to see that the computation of an importance score is
#W[1]-hard. In this context, depending on k and the average number
of transitions from a pair (s, a) in an RL problem, the importance
score calculation can quickly become intractable. For this reason, we
introduce a simple heuristic to reduce the computation time.

2.1 Approximate HXP

Approximate HXP refers to the approximate calculation of each ac-
tion importance score. This approach consists in generating a large
range of scenarios, avoiding the most unlikely ones. To do so, we
could simply consider the most probable transition based on the tran-
sition function p at each time step. However, the result would be a
single scenario, which is not informative enough. This is why we in-
troduce a parameter n ∈ {1, . . . , k − 1} for a scenario of length k
to impose that the last n interactions with the environment are deter-
ministic. Therefore, to generate diverse length-k scenarios, the ex-
haustive approach is applied for k − n time-step(s) and the n last
transition(s) are assumed to be the most likely ones. Accordingly,
only a subset of scenarios is produced which is then used to compute
the utility of an action from state s. This process is repeated for each
feasible action from s to determine the importance score attached to
an action a from s at horizon k.

Definition 4. Given a predicate d, an agent policy π, a transition
function p, a horizon k and n the number of deterministic transitions

(with 1 ≤ n < k), the approximate importance score of a from s is
defined by:

impnd (s, a, π, p, k) = ud(succ
n
π(succ

k−n
π (S(s,a), p), pmax))

− avg
a′∈A(s)\{a}

ud(succ
n
π(succ

k−n
π (S(s,a′), p)), pmax)) (3)

where pmax is a deterministic transition function mapping each pair
(s, a) to only one transition corresponding to a most probable tran-
sition according to p.

This makes it possible to find the most important actions in a his-
tory in a reasonable time, parameterized by n. The larger n is, the
fewer the number of scenarios, so the more approximate the impor-
tance score and greater the reduction in computation time.

2.2 Similarity Metric

The aim of the similarity metric is to compare the similarity be-
tween HXP and approximate HXP. This is done by comparing the
two vectors of importance scores (corresponding to the k actions of
the history). To do this, the L2 distance is used. A distance of 0 indi-
cates identical importance scores for each action in the history. The
worst-case distance occurs when importance scores are the opposite
extrema (i.e. −1 and 1) for each of the k actions in the history, re-
sulting in a distance of 2

√
k. After normalization, the similarity score

between two action importance vectors v1, v2 is thus defined as:

similarity(v1, v2) = 1− L2(v1, v2)

2
√
k

where L2(v1, v2) is the L2 norm of the difference between the two
vectors and k is the vector dimension, i.e. the history length. The
similarity score lies in the range [0, 1] (for k ≥ 1). Thus, a score of 1
indicates maximum similarity between the importance scores of the
two vectors, and a score of 0 maximum dissimilarity.

3 Experimental Results
We tested (Approximate) HXP on different types of RL problems
to verify its effectiveness and scope. The problems studied were:
Frozen Lake (FL), Drone Coverage (DC) and Connect4 (C4) (de-
scribed below). Training was carried out using the Q-learning al-
gorithm [10] for the FL problem, and the Deep-Q-Network algo-
rithm [4] for the C4 and DC problems. (The source code is available
at: https://github.com/lsaulier/HXP). In the Tables, the exhaustive ap-
proach (denoted Exh) is compared with approximate ones in which
the n Last transitions are deterministic (denoted nL).

3.1 Description of the problems

Frozen Lake In this problem, the agent moves in the surface of
a frozen lake (a gridworld) with the aim to reach a specific po-
sition [1]. The agent loses if it falls into a hole. A state is the
agent’s position in the map, S = {1, . . . , l × c} with, l, c the
number of rows and columns in the map. The action space is A =
{left, down, right, up}. The reward function is sparse: the agent
receives a reward of 1 only by reaching the goal state.

The transition function p is stochastic: if the agent chooses a di-
rection (e.g. down), it has 0.6 probability to go on this direction and
0.2 to go towards each remaining direction except the opposite one
(here, 0.2 to go left and 0.2 to go right). Accordingly, the most likely
transition used for approximate HXP is the one that is identical to the
direction induced by the action.

2

https://github.com/lsaulier/HXP


Figure 1. HXP for the holes predicate. The agent is symbolized by a blue dot, the dark blue cells are holes and the destination cell is marked by a star.

Drone Coverage The goal of this multi-agent problem [7] is that
each drone has a perfect cover in a windy gridworld containing trees.
The cover for a drone is the 3× 3 square centered on its position. A
cover is perfect if there are neither trees nor other drones. The action
space is A = {left, down, right, up, stop}. The state features are
the drone’s position and it’s vicinity (5 × 5 square centered on its
position). The agent receives a reward of +3 if it has a perfect cover,
and +0.25 × c otherwise, where c is the number of free cells (i.e.
with no tree or drone) in its cover; it receives a penalty of −1 per
drone in its 5× 5 vicinity and a reward of −3 in case of a crash.

The stochastic transition function p, which represents the wind,
pushes the agent to the left, down, right, up according to the follow-
ing distribution: [0.1, 0.2, 0.4, 0.3]. After an agent’s action, it moves
to another position and then is impacted by the wind, unless the ac-
tion is stop or the agent and wind directions are opposite. Since we
are only interested in the actions of one agent to produce the HXP,
when calculating the importance scores, we decided to limit the num-
ber of possible transitions by imposing the most probable transitions
(i.e. the wind pushing the drones to the right) for the other agents1.

Connect4 The objective of Connect4 is to reach a configuration
where the player lines up 4 tokens in a row, column or diagonal.
The state of a player is the whole board. The action space is A =
{1, 2, 3, 4, 5, 6, 7} where each number i is the action of dropping a
token in the ith column of the board. The reward function is sparse:
the agent receives a reward only by reaching a terminal state (1, −1
and 0.5 for respectively a win, a loss and a draw).

The transition function p is stochastic since the player does not
know the next opponent’s move. To produce approximate HXP’s, we
need to define the most likely transition from each (s, a) pair. Player
1 and Player 2 have learnt by playing against each other. Accordingly,
to study the behavior of Player 1, we assume that the most likely
transition of its opponent is given by the policy of Player 2 (since the
transition function of an average Connect4 player is unknown).

3.2 Results

As an HXP example for the FL problem, the holes predicate was
used for the history shown in Figure 1. holes is a predicate that de-
termines if the agent ends up in a hole. It is easy to see that the most
important action for falling in a hole is the one at time-step 1. Indeed,
with the action left, the agent has a chance of at least 60% of falling
into the hole at coordinates (6,3) according to the transition function.
Action importance scores in Table 1 confirm the assertion: whatever
the approach, the action at time-step 1 stands out from the others.

For each problem, the average of similarity scores are shown in
Table 2. All scores in the Table are based on 1000 length-5 histories
for each predicate. In each history the predicate holds in the last state.

1 This assumption was necessary to limit the size of the search space, thus
allowing us to compute HXP in an exhaustive way. Alternatively, one can
consider that the HXP produced corresponds to a simpler version of the DC
problem.

Table 1. Action importance scores of holes predicate in the history of Fig. 1
Time-step 0 1 2 3 4 Run time (s)

Exh. -0.323 0.315 -0.262 -0.294 -0.119 0.025
1L -0.34 0.301 -0.301 -0.303 -0.105 0.017
2L -0.315 0.379 -0.317 -0.355 -0.109 0.014
3L -0.387 0.36 -0.333 -0.373 -0.067 0.009
4L -0.4 0.467 -0.467 -0.333 -0.067 0.008

Similarity scores of the FL, DC and C4 problems were calculated
respectively for 3, 10 and 5 predicates. Due to lack of space, we do
not describe these predicates (see [8]). Since the scores are close to 1,
the approximate action importance scores are of good quality. We can
note that the greater the number n (of final deterministic transitions),
the lower the similarity to the exhaustive approach. Very logically,
estimating the importance score based on fewer scenarios leads to a
degradation of the approximation to the exhaustive approach.

Table 2. Average similarity scores of History-Explanation.
Problem Exh-1L Exh-2L Exh-3L Exh-4L

FL 0.992 0.983 0.971 0.954
DC 0.992 0.982 0.976 0.964
C4 0.995 0.979 0.955 0.918

The corresponding average times obtained by the different ap-
proaches for computing HXP’s are shown in Table 3. The compu-
tation time decreases exponentially with the increase in the number
of deterministic final transitions, which logically follows from the
fact that less scenarios are explored.

Table 3. Average running time (in seconds) of History-Explanation.
Problem Exh. 1L 2L 3L 4L

FL 0.006 0.005 0.003 0.002 0.001
DC 27.94 18.95 7.69 2.63 0.81
C4 21.51 20.49 6.51 1.58 0.33

4 Conclusion
Experiments showed that approximate HXP’s were of good quality.
Moreover, on average for all predicates and all values of n studied,
including n = k − 1, approximate HXP highlights the same most
important action as plain HXP in 86.91%, 87.75%, 76.19% of the
histories for respectively the FL, DC and C4 problems. Of course,
further experiments are needed to confirm scalability. One limit of
the method is that the transition function is assumed known.

To sum up, we introduced History-eXplanation based on Predi-
cates, which, from a history of the agent’s interactions with the envi-
ronment, exhibits to the user the important actions that are useful for
achieving the predicate. To this end, we proposed an original method
for computing action importance. The complexity of the latter be-
ing #W[1]-hard, we presented an approximate method to reduce the
computation time. This method showed good results on short histo-
ries for a set of three problems from different settings.

3



Acknowledgments
This work was supported by the AI Interdisciplinary Institute ANITI,
funded by the French program “Investing for the Future – PIA3”
under grant agreement no. ANR-19-PI3A-0004.

References
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,

John Schulman, Jie Tang, and Wojciech Zaremba, ‘Openai gym’, arXiv
preprint arXiv:1606.01540, (2016).

[2] Adnan Darwiche, ‘Human-level intelligence or animal-like abilities?’,
Commun. ACM, 61(10), 56–67, (2018).

[3] Zachary C. Lipton, ‘The mythos of model interpretability’, Commun.
ACM, 61(10), 36–43, (2018).

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis, ‘Human-level con-
trol through deep reinforcement learning’, Nature, 518(7540), 529–
533, (2015).

[5] S Nativi and S De Nigris, ‘AI standardisation landscape: state of play
and link to the EC proposal for an AI regulatory framework’, (KJ-NA-
30772-EN-N (online)), (2021).

[6] White House OSTP, ‘Blueprint for an AI Bill of Rights’, (October
2022).

[7] Léo Saulières, Martin C. Cooper, and Florence Bannay, ‘Reinforce-
ment learning explained via reinforcement learning: Towards explain-
able policies through predictive explanation’, in Proceedings of the 15th
International Conference on Agents and Artificial Intelligence, ICAART
2023, Volume 2, eds., Ana Paula Rocha, Luc Steels, and H. Jaap van den
Herik, pp. 35–44. SCITEPRESS, (2023).

[8] Léo Saulières, Martin C Cooper, and Florence Dupin de Saint Cyr,
‘Predicate-based explanation of a Reinforcement Learning agent via
action importance evaluation’, in ECML/PKDD workshop on Advances
in Interpretable Machine Learning and Artificial Intelligence, p. to ap-
pear, Turin, Italy, (September 2023).

[9] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, MIT press, 2018.

[10] Christopher JCH Watkins and Peter Dayan, ‘Q-learning’, Machine
learning, 8(3), 279–292, (1992).

4


	Introduction
	History-Explanation based on Predicates (HXP)
	Approximate HXP
	Similarity Metric

	Experimental Results
	Description of the problems
	Results

	Conclusion

