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Abstract. Gait, the manner of walking, has been proven to be a
reliable biometric with uses in surveillance, marketing and security.
A promising new direction for the field is training gait recognition
systems without explicit human annotations, through self-supervised
learning approaches. Such methods are heavily reliant on strong aug-
mentations for the same walking sequence to induce more data vari-
ability and to simulate additional walking variations. Current data
augmentation schemes are heuristic and cannot provide the neces-
sary data variation as they are only able to provide simple temporal
and spatial distortions. In this work, we propose GaitMorph, a novel
method to modify the walking variation for an input gait sequence.
Our method entails the training of a high-compression model for gait
skeleton sequences that leverages unlabelled data to construct a dis-
crete and interpretable latent space, which preserves identity-related
features. Furthermore, we propose a method based on optimal trans-
port theory to learn latent transport maps on the discrete codebook
that morph gait sequences between variations. We perform extensive
experiments and show that our method is suitable to synthesize addi-
tional views for an input sequence.

1 Introduction
The way people walk, also known as gait, is a crucial biometric trait
that has numerous applications in medicine [13], sports [22], and
surveillance[7]. Most notably, in recent years, it has been success-
fully used as a unique biometric fingerprint to accurately identify in-
dividuals from a distance [5]. The biggest challenge in gait analysis
[11] is disentangling confounding factors which significantly affect
and obfuscate gait, such as the individual clothing, footwear, walking
speed, injury, state of mind, and social environment. Moreover the
extrinsic characteristics of gait sensors (such as camera viewpoint,
distance and resolution) severely affect the quality of the captured
gait. Developing a robust model, able to ignore these factors and rep-
resent the essential gait characteristics is still an open problem. Pre-
vious works [5, 4] have shown that self-supervised pretraining is a
promising new direction, but is still not enough to achieve high per-
formance modelling. However, contrastive pre-training requires high
degree of variation in the data [2, 27], which is often hard to obtain
automatically for gait. Heuristical augmentation procedures are not
able to reliably produce novel viewpoints for a gait sequence, or to
seamlessly change the walking variation as they only provide sim-
ple temporal and spatial distortions. For other similar tasks such as
person re-identification [34], viewpoint variation is induced through
learned methods such as approaches in human pose transfer [23].

We propose GaitMorph, a novel method that is able to modify
skeleton gait sequences to synthesize novel views. Our model is
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based on the vector-quantized variational autoencoder (VQ-VAE)
[28]. Compressing gait sequences in a discrete latent space enables
easy manipulation of codebook entries between walking variations.
We propose to make use of optimal transport [29] to learn transport
maps between walking variations, allowing morphing gait sequences
into a desired variation or viewpoint.

2 Related Work
Works in motion sythetisation are predominantly directed towards
generating controllable, general actions for use in animation [14, 20].
Yan et al. [32] proposed a convolutional architecture named Con-
volutional Sequence Generation Network (CSGN) for generating
skeleton sequences for action recognition. The authors employed
spatial graph downsampling and temporal downsampling to gener-
ate the whole sequence in a single pass, using latent vectors sam-
pled from gaussian processes. Petrovich [19] employed a transformer
VAE model conditioned on the action.

Li et. al [14] proposed a method for performing motion "in-
betweening" using physically plausible constraints. Raab et al. [20]
perform motion in-betweening by using diffusion models. Wang et
al. [30] constructed a method for generating movement animations
which also takes the target environment into account.

Some works tackle the problem of motion prediction [17, 38]. Ma
et al. [17] used a graph-convolutional network for motion prediction
of skeleton sequences. Zhang et al. [38] generate unbounded mo-
tion sequences conditioned only on a single starting skeleton. The
authors employ an RNN-based architecture to procedurally generate
skeletons.

Motion generation techniques have also been used for sign lan-
guage generation [15, 31]. Liu et al. [15] used a cross-modal ap-
proach for audio to sign pose sequence generation using a GRU-
based model. Xie et al. [31] used a VQ-VAE to generate sign pose
sequences, using a discrete diffusion prior model. Zhang et al. [37]
propose a Motion VQ-VAE for text-conditioned action generation,
and demonstrate that a simple VQ-VAE recipe [21] can have very
good performance for this data modality without any major bells and
whistles.

In the area of gait recognition, synthesising walks has been only
briefly studied in the past, partially due to the lack of large-scale
datasets, and the unique constraints of this settings. Works in self-
supervised for images[2, 9, 27] point out that the high quality data
augmentation is crucial for learning good representations. Tian et
al.[27] argues that optimal views for self-supervised contrastive
learning are task-dependent. For instance, in gait analysis, Yu et al.
[35] train a generative adversarial network to generate silhouette se-
quences that are invariant to walking confounding factors such as
viewpoint and clothing change. However, the goal was downstream



Figure 1. Overall architecture of GaitMorph. We train a MS-G3D encoder-decoder to quantize gait representations into a learned fixed-size codebook. After
training, we can manipulate the discrete latent space and morph a walking variation into another using a transport map learned on the training set of a

controlled walking dataset.

identification and not generation in itself. Yao et al. [3] propose a
framework for walking synthetisation based on an autoencoder and
a parametric body model, but their experiments are mainly based
on silhouette-based identification models. Different from previous
works, we are interested in manipulating the walking variation and
viewpoint of existing walks.

3 Method

3.1 Learning a Discrete Latent Space

In order to train a sufficiently large and general autoencoder model,
we assess that current gait datasets are too small. Even though
datasets such as DenseGait [5] and GREW [40] are collected "in-
the-wild" outdoor environments using surveillance cameras, they
nonetheless lack some walking registers such as treadmill walk-
ing, more aggressive camera angles and indoor environments. How-
ever, by combining the major large-scale gait datasets into a single
dataset, we can ensure more diversity of walking registers. We used
DenseGait [5] and GREW [40], two similar in-the-wild datasets for
their diverse walking sequences in outdoor environments, OU-ISIR
[1] for more controlled walking in indoor and treadmill registers, and
Gait3D [39], and indoor "in-the-wild" dataset collected in a super-
market setting. After concatenation of all skeleton sequences from
the datasets, we obtain 875,543 walking sequences, totalling 1220.06
hours. To increase the size as much as possible, we also included
the testing / distractor splits of each dataset whenever possible. We
purposely did not include controlled, small scale datasets such as
CASIA-B [36], as we use them for downstream evaluation.

In order to learn an informative and context-rich walking code-
book, we leverage the expressive power of a Vector Quantized Vari-
ational AutoEncoder model (VQ-VAE) [28]. The VQ-VAE model
has been shown to be effective for a range of tasks, including image
compression and generation [6, 21], and speech recognition [28]. It
is particularly useful in situations where the input data has a high
degree of variability, and where traditional continuous latent space
models may struggle to capture the underlying structure of the data.
Furthermore, a discrete latent space enables a high degree of data
compression, and allows the input data to be further processed as a
sequence of discrete tokens.

To properly encode skeleton sequences, we construct a skeleton
autoencoder based on the MS-G3D [16] model. Figure 1 showcases

the overall architecture of our method. MS-G3D is a powerful graph
convolutional model that has state-of-the-art results in skeleton ac-
tion recognition, surpassing other graph-based methods [33, 24] by
a large margin. Graph convolutional models are well established in
the field of skeleton sequence processing [10] and were developed to
properly handle spatial and temporal variation of the skeleton graph.
For simplicity, we did not perform any graph subsampling [32], and
only used temporal pooling to compress the skeleton sequence. We
follow the official model implementation [16], and adapt it for gait
processing. Specifically, we changed all activations to GeLU [12], we
removed the initial data batch-normalization since skeletons were al-
ready normalized. Initial experiments showed that the default model
was not large enough to reconstruct sequences other than the mean
skeleton. Consequently, we doubled each convolution - batch nor-
malization - activation block to increase model capacity.

3.2 Learning Optimal Transport Mappings

In order to exploit the expressive power of the learned gait tokens,
we posit that only specific tokens from a tokenized gait sequence are
responsible for encoding the gait viewpoint and variation. Therefore,
for a set of walks from a particular variation T , we can learn a set of
transport maps Γ = {γ*

j |j ∈ 1 . . . (T
4
× J)}, for each encoded po-

sition j, that transform the target quantized gait representation into
a quantized representation of a baseline walk B. The transformed
walk T is then decoded by the generator: T ∗ = G(Γ(q(E(T )))).
The walks B and T ∗ should be from the same walking variation. We
propose to learn the transport maps Γ by utilizing optimal transport
theory [29]. We learn a transport map γ∗

j by minimizing the Earth
Mover’s Distance (EMD) between the histograms of two quantized
gaits. EMD assumes there is a cost for moving one quantity to an-
other, which is encoded into a cost matrix C. In general, EMD is
defined as:

γ∗ = argmin
γ∈R

m×n
+

∑
i,j

γi,jCi,j

s.t.γ1 = a; γT 1 = b; γ ≥ 0

(1)

In our case, a and b are histograms of the token occurrences in
each gait sequence, and the cost matrix C is given by the pairwise
distances between the token embeddings. To account for multiple



occurrence of the same token in a quantized gait sequence, we scale
the corresponding vector embedding by the number of occurrences.
We describe our method in Algorithm 1. The algorithm is an instance
of an assignment problem for each token position, and is similar to
finding the minimum flow between the two token distributions.

Algorithm 1 Finding the optimal transport maps between walking
variations.
Require:

E - Trained MS-G3D gait encoder

B ∈ RB(b)×T×J×2 - baseline variation walks
T ∈ RB(t)×T×J×2 - target walks
Z - learned codebook vectors
s - token sequence length

k(b) ← arg(q(E(B))) ▷ Baseline token indices.
k(t) ← arg(q(E(T ))) ▷ Target token indices.
Γ← ∅
for j ← 1 . . . s do
▷ Count occurrences of each baseline and target tokens.

c(b) ← {
∑B(b)

l 1[k
(b)
l,j = r]|r ∈ 1 . . . |Z|}

c(t) ← {
∑B(t)

l 1[k
(t)
l,j = r]|r ∈ 1 . . . |Z|}

▷ Increase codebook embedding magnitude.
C(b) ← Z ⊙ c(b)

C(t) ← Z ⊙ c(t)

▷ Compute cost matrix as pairwise distances between scaled token embeddings.
C ← C(b) · (C(t))⊤

▷ Find optimal transport map for position j
γ*← argminγ

∑
γC ▷ Eq. 1

Γj ← γ*

end for
return Γ

4 Results

For gait synthetisation, we propose a specialized variant of the
FID score, which we name "Frechet Gait Distance (FGD)", in
which walks are processed by a pretrained GaitFormer network on
DenseGait [5]. FGD stands as a automatic measure of walking "nat-
uralness", by measuring the similarity to a given real gait distribution.
Variants have been proposed for measuring motion naturalness and
are geared towards general action synthesis [8, 25, 18], but a special-
ized variant for gait has not yet been adopted.

0◦ 72◦ 90◦ 126◦ 162◦ 180◦

NM
Baseline (vs real NM-36) 0.045532 0.070282 0.111757 0.138415 0.19525 0.265378
Heuristic Aug. (vs real NM-36) 0.047659 0.076971 0.115972 0.138536 0.195943 0.27324
|Z| = 2048 0.046048 0.060231 0.082002 0.102774 0.104749 0.135883

BG
Baseline (vs real NM-36) 0.05295 0.074746 0.114694 0.150358 0.211948 0.274384
Heuristic Aug. (vs real NM-36) 0.055826 0.083356 0.119362 0.152413 0.209289 0.283982
|Z| = 2048 0.056126 0.081991 0.106456 0.131166 0.137103 0.161214

CL
Baseline (vs real NM-36) 0.110895 0.140185 0.189128 0.230226 0.320092 0.411968
Heuristic Aug. (vs real NM-36) 0.120972 0.147726 0.197784 0.235666 0.318236 0.420584
|Z| = 2048 0.075194 0.096743 0.128168 0.148594 0.159419 0.192654

Table 1. FGD values between the morphed gait to the NM-36 variation
and the real NM-36 for CASIA-B validation set. Baseline values

corresponds to the FGD between the real unmodified gait and NM-36. In
most variations, the morphed walk is much closer to the real NM-36 than the

unmodified walk, especially for extreme viewpoints. We denote with bold
the smallest distance and with underline the second smallest distance.

In Table 1, we present our results for gait morphing for CASIA-B,
respectively. We utilized the proposed FGD metric to compare the
distance between the distribution of the morphed walks to the real
baseline walking variation (NM-36 for CASIA-B). For CASIA-B we
focus our evaluation in terms of viewpoint, since it is the principal
confounding factor, especially for 2D poses. Results show that the

morphed walks are properly generated and are closer to the real NM-
36 walking variation compared to the unmodified walk and for more
extreme viewpoints, the effect is larger. Results are more correlated
with the dictionary usage for each dictionary size, rather than recon-
struction error (which is low for every dictionary size). Additionally,
we compared morphed gaits with standard array of heuristic skele-
ton augmentations present in other works[5, 26]: random pace with a
time multiplier sampled from {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0}, joint
and point noise with standard deviation of 0.001, random mirroring
and reversing the walk. While heuristic augmentations provide some
variation in the vicinity of the original walk, the FGD across views
are similar to the non-augmented walks. These results show that the
morphed walks with our method are a reasonable way to augment
existing walks to synthesize novel views.

Figure 2. Examples of modified skeleton sequences using optimal
transport maps. We differentiate left and right laterals with appropriate

colors. The model is able to successfully change the walking viewpoint to a
normal walk under viewpoint 36◦ (NM-36). For this example, we chose a
VQ-VAE with |Z| = 512. Best viewed electronically, zoomed-in and in

color.

Figure 2 showcases selected gait sequences from three different
viewpoints morphed to a common NM-36 variation. The model is
able to morph sequences into the baseline sequence, properly han-
dling limb switching (left and right limbs are properly swapped when
the viewpoint is from behind the walker). For similar baseline / target
pairs, the transport maps exhibit fewer changes.

Models operating with a low dictionary size are not appropriate
to be used for morphing. This is most likely due to the latent em-
beddings being severely entangled. Figure 3 showcases a selected
failure case for morphing a NM-180 walk from CASIA-B into NM-
36 using a VQ-VAE with |Z| = 8. The generated walk has severe
artifacts and cannot be considered appropriate for downstream model
training. Inherently, there is a trade-off between dictionary size and
the malleability of the latent codes: larger dictionary sizes have more
disentangled representations which allow for more informed changes
at the expense of lower data compression.
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