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Abstract. Timely detection and diagnosis of Atrial Fibrillation
(AF) are crucial for prompt treatment and medical intervention.
However, the computational complexity of AF-diagnosing algo-
rithms, such as Deep Learning Models, presents challenges for im-
plementation on portable devices. This study focuses on AF di-
agnosis using low-complexity algorithms, which introduces vari-
ous challenges, including real-time processing, low power consump-
tion, memory constraints, and handling noisy and low-quality ECG
data. The study proposes multiple low-complexity deep learning
models that achieve state-of-the-art accuracy. To attain this goal,
several CNN models were developed, striking a balance between
high accuracy and a minimal number of parameters. As a result,
the study successfully achieved state-of-the-art accuracy using these
low-complexity deep learning models. Our results suggest that AF
detection is feasible using low-complexity models, which can be im-
plemented on portable devices without compromising prediction ac-
curacy.

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia diagnosed in
clinical practice, and its widespread prevalence is considered alarm-
ing for some researchers. Even an epidemic is forecasted within the
next 10 to 20 years [6].

Early detection of AF can reduce the risk of morbidity and mor-
tality. Nevertheless, AF detection can be challenging because the du-
ration of AF episodes varies over time for each individual. These
episodes, also known as Paroxysmal AF (PAF), may be very spo-
radic and commonly asymptomatic, especially at the early stage of
the disease. Consequently, specialists recommend long-term moni-
toring for patients who experience occasional events and symptoms
associated with AF.

Systematic diagnosis of PAF is a major public health concern since
early diagnosis is essential to identify candidates for oral anticoagu-
lation and catheter ablation, which is usually curative when used at
this time [9].

In this sense, machine learning advancements have enabled the de-
tection of AF by computer-aided diagnosis (CAD) systems with high
accuracy [7,8]. Computer-aided interpretation has become highly im-
portant in the field of healthcare and has proven to offer an important
alternative in the clinical ECG work-flow [2].
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However, the high computational cost of these machine learning
algorithms has not allowed the implementation of AF system-aided
diagnosis on wearable devices (at the edge).

This study addresses the challenges related to ECG data process-
ing at the edge. Therefore, it aims at finding low-complexity algo-
rithms that facilitate real-time processing capabilities and low power
consumption. Furthermore, it deals with low-quality and noisy ECG
signals, which are very likely to appear in wearable devices.

We propose different low-complexity deep learning models
achieving state-of-the-art accuracy. Results regarding F1 score, and
computational complexity in terms of the number of parameters were
determined using the Icentia11k dataset [12].

The remaining sections of this paper are organized as follows: Sec-
tion 2 introduces the dataset utilized in this study. Section 3 provides
a detailed description of the proposed models. Sections 4 and 5 sum-
marize and discuss the obtained results, respectively, and also com-
pare our research with related works. Section 6 concludes the study.

2 Data description

In this work, we used the Icentia11k dataset [12], which contains nor-
mal sinus rhythms, noises, AF, and atrial flutter signals. As suggested
by Hannun et. al. [2], we merged the AF and atrial flutter signals in
one single class.

It is important to highlight that the Icentia11k stands as the largest
publicly available ECG dataset, comprising data from 11 thousand
patients and 2 billion labelled beats. Besides, the Icentia11k dataset
contains a substantial number of noise signals, accounting for around
40% of the data. As previously mentioned, the ability to effectively
handle noise signals is a critical objective in the development of
wearable devices.

We split the dataset into training, validation, and test set using
64%, 16%, and 20% of the data, respectively. It is important to note
that each set has separated patients; therefore, there are no shared
patients between sets.

3 Models

We introduce a type of deep elastic model capable of adjusting
its depth, width, and kernel-size through trainable hyperparameters.
This model is inspired in [2, 10, 13]. Our objective is to identify
the minimum values for these hyperparameters that still enable the



model to achieve state-of-the-art accuracy. By determining these op-
timal values, we can create the most compact version of the model
while maintaining its performance.

The network architecture consists of N residual blocks (Figure 1),
where N , Ich and Sj are hyperparameters that will allow us to vary
the model size.

Figure 1: The CNN consist of N residual blocks and accepts raw ECG
data as input, and outputs a prediction of Normal (N), cardiac Ar-
rhythmia (A) or Noise signal (∼). The number output channels of
the first layers is Ich. The number of output channels of the layers in
the residual blocks is Ich · 2sj . The depth and width of the network
are changed by the hyperparameters N , Ich and sj

The first and last layers of the model are special cases due to this
pre-activation block structure [10]. The model uses residual blocks
as a means to deal with the vanishing or exploding gradient prob-
lem [3]. Moreover, the model includes skip-connections which fa-
vor the propagation of the information in deep neural networks. The

model uses Batch Normalization to keep values in-bounds and avoid
saturation. It applies Dropout to prevent overfitting during training,
followed by a Rectified Linear Activation Unit (ReLU).

Each residual block culminated in average pooling. Besides, Max-
pooling layers were also used on the skip connections to maintain
dimensional consistency when the two separate paths joined back to-
gether at each block. The model finishes with a fully connected layer
followed by the Softmax function, which has 3 outputs correspond-
ing to the probability for each class (normal, arrhythmia, or noise).

Figure 2: F1-scores of several models derived from our baseline
model (Fig 1).

4 Results

The deep learning models were implemented in Python using the
Keras library with a TensorFlow backend. The networks were trained
by Adam optimizer with the default parameters β1 = 0.9 and
β2 = 0.99, using a mini-batch size of 128. The deployed learning
rate was 0.001 and was reduced by a factor of 10 when the loss
plateaus. We chose the model that achieved the lowest loss on the
validation dataset.

We tested several configurations by varying the kernel-size (K),
depth (N ), and width (Ich and sj). The kernel-size is a highly influ-
ential hyperparameter that underwent extensive training. Our find-
ings indicate that the best value for the size of the kernel is K = 16.
We also tested different ways to apply down-sampling in the CNN
by setting a stride greater than 1. The downsampled late strategy [4]
was used and has shown to improve the accuracy on a limited bud-
get of parameters. This strategy aims to have large activation maps at
the beginning of the network, which can lead to higher classification
accuracy.

We trained several models with the aim of finding their F1-score.
Figure 2 illustrates the top-performing models discovered in our
study. Notably, with just 20,289 parameters, we achieved an F1-score
of 0.902, and larger models did not present a significant F1-score im-
provement. For this reason, it was decided to focus on the four small-
est models (CNN1-CNN4). Table 1 presents the key characteristics
of these four models.



Table 1: Main characteristics of the CNN 1 - CNN 4 models.

Models Kernel Size N Ich Cj
out = Ich · 2sj Parameters

CNN1 16 8 2 2, 2, 2, 2, 2, 2, 2, 2 4,455
CNN2 16 13 2 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4 7,093
CNN3 16 11 2 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8 11,833
CNN4 16 13 2 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 16 20,289

Table 2: Recent studies, on larger data sets, classifying ECG signals using Deep Learning techniques.

Study Database Total Data & Number of Technique Number of Results
Classes patients parameters

Hannun et al., Zio Monitor 91,232 records 53,549 patients CNN 10,473,635 F1 = 0.837
2019 [2] 12 classes

Rubin et al., PhysioNet 8,528 records 8,528 patients CNN 262,344 F1 = 0.820
2018 [11] Challenge 2017 4 classes

Yao et al., 1st China 9,831 records 9,831 patients ATI-CNN 4,984,640 F1 = 0.812
2020 [14] Physiological 8 classes

Signal Challenge

Fonseca et al., Icentia11k 550,000 records 11,000 patients CNN 250,000 F1 = 0.801*
2022 [1] 4 classes Constrastive

*Few-shot

CNN1 Icentia11k 550,000 records 11,000 patients CNN 4,455 F1 = 0.813
(Ours) 4 classes

CNN4 Icentia11k 550,000 records 11,000 patients CNN 20,289 F1 = 0.902
(Ours) 4 classes

5 Discussion

Deep learning has had a profound impact on enhancing state-of-the-
art accuracy across various classification and detection tasks. As a
result, there is a growing trend in deep learning research concerning
arrhythmia detection [8]. However, these studies have primarily fo-
cused on improving accuracy by increasing model size, leading to
oversized models [5].

The substantial size of large deep learning models poses signifi-
cant challenges, including high memory consumption and demand-
ing computational resources, rendering their implementation on edge
devices impractical. Additionally, the incorporation of recurrent lay-
ers, such as short-term memory (LSTM) cells, or the adoption of
transformer-based approaches can further increase computational
complexity and hinder real-time inference.

Table 2 presents a comparison between our proposed models and
selected recent ECG classification studies that have specifically fo-
cused on larger datasets (comprising more than 8000 patients) and
have reported the number of parameters. The table provides detailed
information on various aspects, including the amount of data and
classes, the number of patients involved, the deep learning techniques
employed, and the corresponding accuracy results achieved by each
study.

Notably, our CNN-4 model, consisting of only 20, 289 parameters,
achieved an impressive F1-score of 0.902.

6 Conclusions and Future Work

This research tackled the challenges related to AF detection by
proposing low-complexity deep learning models suitable for deploy-
ment on portable devices.

Future work will focus on employing compression strategies, such
as pruning and quantization, to effectively reduce model size while
preserving performance. Additionally, we aim to deploy compressed
models on edge devices like FPGAs and System on Chip (SoC). This
will involve model adaptation and performance optimization to en-
sure efficient execution on resource-constrained edge devices.

Ultimately, our goal is to contribute to early AF detection at the
edge, enabling timely treatment and reducing the associated risks of
morbidity and mortality. By pursuing these research areas and ob-
jectives, we aspire to make significant advancements in the field of
AF detection, leading to improved patient outcomes and healthcare
practices.
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