
Work in Progress: Integrity Protection for Encrypted
DNN Inference

Muhammad Santriajia, Gidhan Algaryb, Muhammad Fikriansyahc, Rian Rajagedea, Ardhi Yudhaa,
Kyle Thomasa, David Mohaisena and Yan Solihina

aUniversity of Central Florida
bUniversitas Dian Nuswantoro

cUniversitas Telkom

Abstract.
Deep Neural Network (DNN) applications processing privacy-

sensitive data must safeguard data integrity and confidentiality while
ensuring high accuracy. While data confidentiality can be upheld
through hardware-encrypted memory or software algorithms, DNN
accuracy remains vulnerable to bitflip attacks, particularly within the
ciphertext space. This extended abstract delves into the impact of bit-
flips in the ciphertext space when DNNs are encrypted via hardware-
encrypted memory and the software algorithm, Fully Homomorphic
Encryption (FHE). We further discuss potential strategies for pre-
serving integrity.

1 Introduction

Deep Neural Networks (DNNs) are becoming a backbone for many
applications because of their high accuracy. Many DNN applications
run in a client-server environment where the data is collected in the
client and then processed in the server. There are instances where
server security might be untrusted, especially if the server is leased
to other tenants. When working on confidential data like medical
records, DNN must ensure the confidentiality of the inference.

Confidentiality can be protected using software and hardware. In
hardware-encrypted memory like AMD SEV [1] and Intel SGX[3],
the data and model of DNN are encrypted off the chip. Specialized
hardware will only decrypt the data and models currently used for
the computation to the on-chip memory. This ensures data confiden-
tiality, safeguarding against cyberattacks.

Another approach to protecting inference confidentiality is Fully
Homomorphic Encryption (FHE). Unlike the hardware approach, the
encrypted data and models do not require decryption to be computed.
The FHE approach is preferable when the server does not have the
hardware capability to do a secure confidential computation.

However, both approaches suffer from bitflip attacks that can vi-
olate computation integrity and reduce the DNN accuracy. A recent
study shows that running encrypted DNNs has a more significant risk
to integrity. Recent works [13] show that the effect of bitflips on ci-
phertext space could lead to massive bit errors in plaintext, which
aggravates the accuracy degradation effect.

Research in providing integrity protection for encrypted DNN has
been scarce. Much research is focused on integrity protection in
plaintext [15, 14, 9, 8, 6]. Meanwhile, the research in FHE encrypted
DNN focus on accelerating the computation [10, 12, 4, 7].

Thus in this extended abstract, we will report our progress in pro-
tecting the integrity of encrypted DNN inference. In the first section,
we will show the effect of bitflips in hardware-encrypted memory.
Then we summarize our effort to protect the integrity of DNN in-
ference in a hardware-encrypted memory. In the second section, we
will report the effect of bitflips in DNN inference encrypted by FHE.
Then we will discuss the potential solution to protect the integrity.

2 Threat Models
For this study, we focus on a specific scenario where a Deep Neural
Network (DNN) is already trained, with its parameters fixed and im-
mutable. The memory attacks of interest occur during the inference
phase of the DNN, specifically within the ciphertext space. Under
our threat model:

• Bit Alterations: We assume that the attacker possesses the capa-
bility to alter multiple bits in either the DNN model parameters or
the DNN input data.

• Confidentiality Preservation: Despite the attacker’s ability to
change bits, it’s essential to note that the actual data—its confi-
dentiality—is not compromised and remains concealed from the
attacker.

• Fault Detection Methodology: Our methodology for detecting
these faults is inspired by and mirrors the approach detailed by
Ponader et al. [13].

3 Privacy-preserving DNN Inference using
Encrypted Memory

This section summarizes our finding in [16] by systematically study-
ing bitflips in encrypted memory. We found that not all bits have
the same importance in counter-mode encryption memory. In the
floating-point datatype, we found that four bits reduce accuracy more
significantly when flipped, and counter-intuitively, some of the less
significant bits reduce accuracy more significantly than more signif-
icant bits when flipped.

3.1 Bitflip Impact on Encrypted DNN Inference

In the counter-mode encrypted memory (CMEM), the number and
positions of bit errors in the ciphertext remain consistent in the plain-
text.



N
or

m
al

iz
e 

A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100

Bit-0 Bit-1 Bits 2-
5

Bit-6 Bit-7 Bit-8 Bit-9 Bit-10 Bit-11 Bit 12 Bits 
13-31

Figure 1. Effect of bitflips in term of accuracy for CMEM

We note that a unique characteristic of counter-mode encrypted
memory (CMEM) is that the diffusion property of encryption only
affects the pad generation, not the data stored in memory. To en-
crypt or decrypt, a pad is generated by encrypting or decrypting var-
ious components, including an address and a counter. Then the pad
is XORed with data. Because of this, the diffusion property of en-
cryption affects only counters. In contrast, for data conversion from
plaintext to ciphertext, the number of bit flips and their locations do
not change. From the attacker’s point of view, CMEM allows them to
precisely target any particular bits in DNN weights, even though they
could also target bits of a counter to cause many bit errors. Thus, it
is important to know what bits the attacker may find more attractive
to flip, and they are affected by number representations.

Though some works have proposed narrower floating-point num-
bers, NN parameters are often stored as 32-bit floating-point or fixed-
point representations. The IEEE 754 floating-point format, consisting
of a 1-bit sign (s; bit 0), 9-bit exponent (e; bits 1-9), and 23-bit man-
tissa (m; bits 10-32). These components represent a number using
the following formula: F = (−1)s × 2(e−b) × (m + 1), where
b = 2(k−1) − 1 and k is being the number of bits used for the expo-
nent representation. Furthermore, the exponent bits are divided into
a 1-bit sign (bit 1) and 8-bit magnitude (bits 2 to 9).

3.2 Characterization of Bit Flip Impacts on Accuracy

We start by choosing a particular bit in the floating-point representa-
tion. Then, for the target network, we randomly choose a parameter
(in any layer) and flip the particular bit of that parameter. Then we
measure the accuracy of the network’s classification output for the
network’s testing inputs. We repeat the experiment over 1,000 times,
randomly selecting a parameter to inject the bit flip. Then, we collect
the minimum accuracy (Low), average accuracy (Average), and max-
imum accuracy (High). We test our experiment on an MNIST-trained
neural network with 34,720 weights trained. The results are shown in
Figure1. The figure shows the accuracy degradation in terms of each
bit position’s high, average (vertical line in the middle), and low.

We note the following interesting observations. First, the table
shows four notable bits that reduce the network accuracy to below
80%: bits 0, 1, 6, and 7. All other bits do not reduce accuracy by
more than 5%. Furthermore, when flipped, none of the mantissa bits
greatly reduce the accuracy.

Second, bit 1 turns out to have the most considerable impact on ac-

curacy, reducing it from 98% to 16.5% with a single bit flip, showing
the severe impact a single bit out of a million can have.

From the representation, bit 1 essentially represents the sign for
the exponent. Hence flipping the bit changes a number from very
large to very small, or vice versa while having the same sign, i.e., a
positive number remains positive, and a negative remains negative.

Third, bit 0 changes the sign of the number. It also substantially af-
fects accuracy, but not as much bit 1. From here, we can conclude that
changing a number magnitude significantly reduces accuracy more
than changing its sign.

Fourth, surprisingly, the four most significant exponent bits do not
significantly affect accuracy. Instead, the fifth and sixth most signif-
icant exponent bits (bits 6-7) reduce accuracy much more than other
exponent bits, even though the more significant the exponent bit, the
more it changes the magnitude of the number. Investigating this fur-
ther, we found that the activation function is the culprit.

4 Privacy-preserving DNN Inference using Fully
Homomorphic Encryption

This section studies bitflips attacks in DNN inference encrypted by
FHE. FHE is an advanced cryptographic technique that allows com-
putations to be performed on encrypted data without requiring de-
cryption. It enables data to be encrypted in a way that retains its
arithmetic properties, allowing mathematical operations to be applied
directly to the encrypted data. This means that even with encrypted
data, complex computations can be executed, and the final result will
also be in encrypted form. It ensures the confidentiality of sensitive
data throughout the entire computation process.

4.1 Bitflip Impact

N
or

m
al

iz
ed

 A
cc

ur
ac

y

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7

Figure 2. Effect of bitflips in term of accuracy for FHE-Cryptonet

Figure 2 shows the effect of bit-flip in multiple bits of MNIST digit
classification dataset in Cryptonet [5] encrypted by FHE. Cryptonet
is a DNN architecture explicitly designed to do encrypted inference
using FHE. In each of the 5000 iterations, we randomly applied a
bit-flip to one of the data input bits. From these results, we can make
several observations. First, the average accuracies are in the 10s%,
which means a single random bit-flip attack in FHE has a greater
detrimental impact compared to a similar bit-flip attack in counter-
mode encryption from the previous section. Second, the resulting ac-
curacies show an extensive range, from zero percent accuracies to

2



Algorithm 1 Layer Hashing — Detection Stage
1: procedure LAYER HASHING DETECTION
2: N ← NetworkSize
3: SNH ← StoredNetworkHash
4: SLH ← StoredLayerHashess
5: HN ← NewNetworkHash
6: if HN == SLHi then
7: return No Errors
8: end if
9: for L = 1, 2, . . . , N do

10: HL,HO ← NewHash, SLHL
11: if HL = HO then
12: Report Error Layer
13: end if
14: end for
15: end procedure

40%. Our results suggest that encrypted DNN inference using FHE
is more susceptible to bit-flip attacks than counter-mode encryption.

5 Potential Solution

To effectively detect both malicious bit-flip attacks and unintentional
bit flips, we delve into techniques that identify memory errors im-
pacting NN parameters. The detection subsection summarizes our
findings from [16] for the hash method. We also offer a weighted
checksum solution for encrypted DNN using FHE in [11]. Then we
explore the techniques to provide DNN robustness. We found that the
current state of the art cannot protect the encrypted DNN using FHE
against a single random bit-flip.

5.1 Hash Detection Method

Algorithm 1 describes our solution to detect bitflip using layer hash-
ing. Hashing is a common method for ensuring data integrity in var-
ious applications. A hash function maps an input string, denoted as
M , of arbitrary length to an output string h(M) of a fixed bit-length
d. This output string is called the “message digest,” and any change
to M changes the digest. Our layer hashing method (LHM) has a
100% detection rate for all cases. There is no way to evade LHM
detection, even through layer permutation.

LHM has two drawbacks. First, any change in a parameter, even
small ones with small magnitudes, requires the hash to be recalcu-
lated. Second, LHM cannot pinpoint erroneous parameters. Hence
recovering from an error requires restoring the entire layer.

5.2 Robustness Method

In this experiment, we perform the experiment on ResNet-18 trained
with the CIFAR-10 dataset. We encrypt the input data with FHE and
then apply a single bitflip randomly. Then we decrypt the data into
plaintext and send it as input to the DNN to simulate the effect of
bitflip in ciphertext space. Figure 3 shows the effect of a single bitflip
in encrypted data input by FHE on the DNN accuracy. We can see
that the current state-of-the-art, the robust-trained DNN model and
control-based model [2] cannot prevent accuracy degradation. The
methods give about 10% accuracy in ResNet inferring a CIFAR-10
dataset. This happens because a robust DNN model is designed to
withstand adversarial attacks and maintain accurate predictions even
when exposed to small, intentional input perturbations. However, the
single bitflip attack in the ciphertext would become multiple bitflips
in plaintext, making the robust model ineffective.

A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100

Baseline Robust DNN Controlled DNN

Normal Flipped

Figure 3. Effect of bitflips in terms of accuracy for multiple robustness
protection

6 Conclusion and Future Works
In this extended abstract, we discussed our advancements in ensuring
integrity protection for encrypted DNN inference. While we’ve made
strides in detecting bitflip anomalies, addressing the resulting infer-
ence inaccuracies remains a challenge. Currently, the sole recourse is
to recompute the entire DNN, which can be resource-intensive. Mov-
ing forward, our aim is to develop a ’self-healing’ mechanism for
encrypted DNNs, aiming to mitigate these inaccuracies without the
need for full recomputation, thereby reducing computational costs

7 Acknowledgement
This work was partially supported by the Ministry of Education, Cul-
ture, Research, and Technology of the Republic of Indonesia through
the Garuda Ace Project, with Project IDs 21-I1 and 24-I4.

References
[1] AMD, ‘AMD SEV-SNP: Strengthening VM isolation with integrity

protection and more’, White Paper, (Feb 2020).
[2] Zhuotong Chen, Qianxiao Li, and Zheng Zhang, ‘Self-healing robust

neural networks via closed-loop control’, J. Mach. Learn. Res., 23(1),
(jan 2022).

[3] Intel Corporation, ‘Intel architecture memory encryption technologies
specification’, Ref: #336907-002US, (2019).

[4] Bo Feng, Qian Lou, Lei Jiang, and Geoffrey Fox, ‘CRYPTOGRU: Low
latency privacy-preserving text analysis with GRU’, in Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2052–2057, Online and Punta Cana, Dominican Republic,
(November 2021). Association for Computational Linguistics.

[5] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing, ‘Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy’, in
International conference on machine learning, pp. 201–210. PMLR,
(2016).

[6] Yanan Guo, Liang Liu, Yueqiang Cheng, Youtao Zhang, and Jun Yang,
‘Modelshield: A generic and portable framework extension for defend-
ing bit-flip based adversarial weight attacks’, in 2021 IEEE 39th In-
ternational Conference on Computer Design (ICCD), pp. 559–562,
(2021).

[7] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan,
‘Gazelle: A low latency framework for secure neural network infer-
ence’, in Proceedings of the 27th USENIX Conference on Security Sym-
posium, SEC’18, p. 1651–1668, USA, (2018). USENIX Association.

[8] Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali
Chakrabarti, ‘Radar: Run-time adversarial weight attack detection and
accuracy recovery’, 2021 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 790–795, (2021).

3



[9] Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi
He, Deliang Fan, and Chaitali Chakrabarti, ‘Defending bit-flip at-
tack through dnn weight reconstruction’, in Proceedings of the 57th
ACM/EDAC/IEEE Design Automation Conference, DAC ’20. IEEE
Press, (2020).

[10] Qian Lou and Lei Jiang, ‘She: A fast and accurate deep neural network
for encrypted data’, in Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., (2019).

[11] Qian Lou, Muhammad Santriaji, Ardhi Wiratama Baskara Yudha, Jiaqi
Xue, and Yan Solihin. vfhe: Verifiable fully homomorphic encryption
with blind hash, 2023.

[12] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang, ‘Safenet: A secure,
accurate and fast neural network inference’, in International Confer-
ence on Learning Representations, (2020).

[13] Jonathan Ponader, Kyle Thomas, S. Kundu, and Y. Solihin, ‘Milr:
Mathematically induced layer recovery for plaintext space error correc-
tion of cnns’, 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 75–87, (2021).

[14] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan, ‘Bit-flip attack: Crush-
ing neural network with progressive bit search’, 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV ’19), 1211–1220, (Apr
2019).

[15] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali
Chakrabarti, and Deliang Fan, ‘T-BFA: targeted bit-flip adversarial
weight attack’, CoRR, abs/2007.12336, (2020).

[16] Kyle Thomas, Muhammad Santriaji, David Mohaisen, and Yan Solihin,
‘Exploration of bitflip’s effect on dnn accuracy in plaintext and cipher-
text’, IEEE Micro, 1–11, (2023).

4


